
Lecture 5. The equations of lines and surfaces in the space of the plane equation.  

 

An equation of straight line going through two different 

points ( х1,  у 1,  z 1 )  and  ( х2,  у 2 ,  z 2  ): 

  

                                                                          

 
  

A parametric equation of straight line, going through a point  ( х0 ,  у 0 ,  z 0 ) and parallel to 

a direction vector  ( a, b, с )  of a straight line: 

  

                                                                                                   

Let two planes  Ах+ Ву+ Сz+ D = 0  and  Eх+ Fу+ Gz+ H = 0  be given, moreover, their 

normal vectors aren't collinear, then the set of simultaneous equations 

  

                                                                                                    

describes an intersection line of these planes. 

  
Let ( a, b, с ) and  ( p, q, r ) be direction vectors of two straight lines, then a parallelism 

condition of straight lines is : 

  

aq – bp = br – cq = ar – cp = 0 , 

  

  

a perpendicularity condition of straight lines is : 

  

ap + bq + cr = 0 , 

  
an angle    between straight lines: 

  

                                                                              

  

an angle    between a straight line and a plane: 

                       

                                                                              

  



An equation of sphere of a radius  R  with a center in the point  ( a, b, с )  is : 

  

( x – a ) 
2
 + ( y – b )

 2
 + ( z – c )

 2
 = R

 2
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The equation  does not describe a line in , instead it describes a plane.  

  Suppose that we know a point that is on the line, , and 

that  is some vector that is parallel to the line.  Note, in all likelihood, 

 will not be on the line itself.  We only need  to be parallel to the line.  Finally, 

let  be any point on the line. 

  

Now, since our “slope” is a vector let’s also represent the two points on the line as 

vectors.  We’ll do this with position vectors.  So, let  and  be the position vectors 

for P0 and P respectively.  Also, for no apparent reason, let’s define  to be the vector with 

representation . 

  

We now have the following sketch with all these points and vectors on it. 

 
  

Now, we’ve shown the parallel vector, , as a position vector but it doesn’t need to be a 

position vector.  It can be anywhere, a position vector, on the line or off the line, it just needs to 

be parallel to the line. 

  

Next, notice that we can write  as follows, 

 
 

  

If you’re not sure about this go back and check out the sketch for vector addition in the vector 

arithmetic section.  Now, notice that the vectors  and  are parallel. Therefore there is a 

number, t, such that 

  
 

  

http://tutorial.math.lamar.edu/Classes/CalcII/VectorArithmetic.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/VectorArithmetic.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/VectorArithmetic.aspx#ParallelFact


  

We now have, 

  

 

  

This is called the vector form of the equation of a line.  The only part of this equation that is 

not known is the t.  Notice that  will be a vector that lies along the line and it tells us how 

far from the original point that we should move.  If t is positive we move away from the original 

point in the direction of  (right in our sketch)  and if t is negative we move away from the 

original point in the opposite direction of  (left in our sketch).  As t varies over all possible 

values we will completely cover the line.  The following sketch shows this dependence on t of 

our sketch. 

  

 
  

There are several other forms of the equation of a line.  To get the first alternate form let’s start 

with the vector form and do a slight rewrite. 

  

 

 

  

  

The only way for two vectors to be equal is for the components to be equal. In other words, 

  

 

  



This set of equations is called the parametric form of the equation of a line.  Notice as well 

that this is really nothing more than an extension of the parametric equations we’ve seen 

previously.  The only difference is that we are now working in three dimensions instead of two 

dimensions. 

  

To get a point on the line all we do is pick a t and plug into either form of the line.  In the vector 

form of the line we get a position vector for the point and in the parametric form we get the 

actual coordinates of the point. 

  

There is one more form of the line that we want to look at.  If we assume that a, b, and c are all 

non-zero numbers we can solve each of the equations in the parametric form of the line 

for t.  We can then set all of them equal to each other since t will be the same number in 

each.  Doing this gives the following, 

  

 

  

This is called the symmetric equations of the line.  

  

If one of a, b, or c does happen to be zero we can still write down the symmetric equations.  To 

see this let’s suppose that .  In this case t will not exist in the parametric equation 

for y and so we will only solve the parametric equations for x and z for t.  We then set those 

equal and acknowledge the parametric equation for y as follows, 

 
  

 Equations of Planes 

In the first section of this chapter we saw a couple of equations of planes.  However, none of 

those equations had three variables in them and were really extensions of graphs that we could 

look at in two dimensions.  We would like a more general equation for planes. 

  

So, let’s start by assuming that we know a point that is on the plane, 

.  Let’s also suppose that we have a vector that is orthogonal (perpendicular) to the 

plane, .  This vector is called the normal vector.  Now, assume 

that  is any point in the plane.  Finally, since we are going to be working 

with vectors initially we’ll let  and  be the position vectors for P0 and P respectively.  

  

Here is a sketch of all these vectors. 

http://tutorial.math.lamar.edu/Classes/CalcII/ParametricEqn.aspx


 
  

Notice that we added in the vector  which will lie completely in the plane.  Also 

notice that we put the normal vector on the plane, but there is actually no reason to expect this to 

be the case.  We put it here to illustrate the point.  It is completely possible that the normal vector 

does not touch the plane in any way. 

  

Because  is orthogonal to the plane, it’s also orthogonal to any vector that lies in the plane.  In 

particular it’s orthogonal to .  Recall from the Dot Product section that two orthogonal 

vectors will have a dot product of zero.  In other words, 

  

  

 

  

  

This is called the vector equation of the plane. 

  

A slightly more useful form of the equations is as follows.  Start with the first form of the vector 

equation and write down a vector for the difference. 

 

 

  

  

Now, actually compute the dot product to get, 

  

                                             

  

This is called the scalar equation of plane.  Often this will be written as, 

  

  

http://tutorial.math.lamar.edu/Classes/CalcII/DotProduct.aspx#OrthogFact


where  

  

This second form is often how we are given equations of planes.  Notice that if we are given the 

equation of a plane in this form we can quickly get a normal vector for the plane.  A normal 

vector is, 

 
 

  

  

  

  Quadric Surfaces 

  Quadric surfaces are the graphs of any equation that can be put into the general form 

 
 

  

where A, … , J are constants. 

  

There is no way that we can possibly list all of them, but there are some standard equations so 

here is a list of some of the more common quadric surfaces. 

  

Ellipsoid 
Here is the general equation of an ellipsoid. 

 

 

  

Here is a sketch of a typical ellipsoid. 

 

  

If  then we will have a sphere. 

  

Notice that we only gave the equation for the ellipsoid that has been centered on the 

origin.  Clearly ellipsoids don’t have to be centered on the origin.  However, in order to make the 

discussion in this section a little easier we have chosen to concentrate on surfaces that are 

“centered” on the origin in one way or another. 

  

Cone 
Here is the general equation of a cone. 

 
 

  

Here is a sketch of a typical cone. 

 

  

Note that this is the equation of a cone that will open along the z-axis.  To get the equation of a 

cone that opens along one of the other axes all we need to do is make a slight modification of the 

equation.  This will be the case for the rest of the surfaces that we’ll be looking at in this section 

as well. 

  

In the case of a cone the variable that sits by itself on one side of the equal sign will determine 

the axis that the cone opens up along.  For instance, a cone that opens up along the x-axis will 

have the equation, 



 
 

  

  

For most of the following surfaces we will not give the other possible formulas.  We will 

however acknowledge how each formula needs to be changed to get a change of orientation for 

the surface. 

  

Cylinder 
Here is the general equation of a cylinder. 

 
 

  

  

This is a cylinder whose cross section is an ellipse.  If  we have a cylinder 

whose cross section is a circle.  We’ll be dealing with those kinds of cylinders more than the 

general form so the equation of a cylinder with a circular cross section is, 

  

  

  

 Here is a sketch of typical cylinder with an ellipse cross section. 

 

The cylinder will be centered on the axis corresponding to the variable that does not appear in 

the equation. 

  

Be careful to not confuse this with a circle.  In two dimensions it is a circle, but in three 

dimensions it is a cylinder. 

  

Hyperboloid of One Sheet 
Here is the equation of a hyperboloid of one sheet. 

 

 

  

Here is a sketch of a typical hyperboloid of one sheet. 

  

 

  

The variable with the negative in front of it will give the axis along which the graph is centered. 

  

Hyperboloid of Two Sheets 
Here is the equation of a hyperboloid of two sheets. 

 
 

  

Here is a sketch of a typical hyperboloid of two sheets. 

  

The variable with the positive in front of it will give the axis along which the graph is centered. 

  

Notice that the only difference between the hyperboloid of one sheet and the hyperboloid of two 

sheets is the signs in front of the variables.  They are exactly the opposite signs. 



  

Elliptic Paraboloid 
Here is the equation of an elliptic paraboloid. 

 
 

  

  

As with cylinders this has a cross section of an ellipse and if  it will have a cross 

section of a circle.  When we deal with these we’ll generally be dealing with the kind that have a 

circle for a cross section. 

  

In this case the variable that isn’t squared determines the axis upon which the paraboloid opens 

up.  Also, the sign of c will determine the direction that the paraboloid opens.  If c is positive 

then it opens up and if c is negative then it opens down. 

  

Hyperbolic Paraboloid 
Here is the equation of a hyperbolic paraboloid. 

 
 

  

  

  

These graphs are vaguely saddle shaped and as with the elliptic paraoloid the sign of c will 

determine the direction in which the surface “opens up”.  The graph above is shown 

for c positive. 

  

With the both of the types of paraboloids discussed above the surface can be easily moved up or 

down by adding/subtracting a constant from the left side. 

  


